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Abdract 

The inflationary Universe scenario predicts a flat Universe and both adiabatic and 

isocurvature primordial density perturbations with the Zel’dovich spectrum. The two 

simplest realizations, models dominated by hot or cold dark matter, seem to be in conflict 

with observations. We examine flat models with two components of mass density, where 

one of the components of msas density is smoothly distributed, and compute the large- 

scale (2 lOh-‘Mpc) peculiar velocity field for these models. For the smooth component 

we consider relativistic particles, a relic cosmological term, and light strings. At present 

the observational situation is unsettled; but, in principle, the large-scale peculiar velocity 

field is a very powerful discriminator between these different models. 
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I. INTRODUCTION 

Studies of the very early history of the Universe (t << 0.01s) have resulted in a number 

of very definite predictions for the initial data appropriate for structure formation in the 

Universe. The inflationary scenario (Guth, 1981; Linde, 1982; Albrecht and Steinhardt, 

1982; for a recent review, see Turner, 1986a) predicts primordial density perturbations, 

both adiabatic (Hawking, 1982; Starobinskii, 1982; Guth and Pi, 1982; Bardeen, Stein- 

hardt, and Turner, 1983) and in the case of an axion-dominated Universe, isocurvature also 

(Steinhardt and Turner, 1983; Linde, 1985; Seckel and Turner, 1985), with the Zel’dovich 

spectrum, and that the Universe today should be indistinguishable from the flat, Einstein- 

deSitter model. Primordial nucleosynthesis constrains the fraction of critical density in 

baryons (= fib) to be less than O.O35h-’ (Yang et al. 1984), strongly suggesting that most 

of the mass density in the Universe is non-baryonic. [Here and throughout the present 

value of the Hubble parameter is taken to be, Ho = 100h km .v-‘Mpc-‘.I There is a long 

list of candidate relic particles that might be left over from the earliest moments of the 

Universe and whose predicted relic abundance is such that they could be the dark compo- 

nent (for a recent review of the dark matter candidates, see Turner, 1986b). Fortunately, 

such relics can be lumped into two limiting classes: hot (so far only neutrinos) and cold 

(essentially all the other candidates). These highly specific suggestions for the initial data 

appropriate for the structure formation problem lead to three well-defined scenarios: hot 

(adiabatic) and cold (adiabatic and isocurvature), neither of which results in a totally 

satisfactory scenario of structure formation. 

Because the observational data seem to indicate that the fraction of critical density 

which is contributed by matter which clusters on scales less than about lOh-‘Mpc is 
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only about 0.1 to 0.3, somewhat more speculative scenarios have put forth where the yet 

undetected Andy unaccounted for 70% - 90% of the critical density is in the form of a 

smoothly-distributed component. Suggestions for the smooth component include ‘failed 

galaxies’ (Kaiser, 1986; Bardeen et al., 1986), relativistic particles produced by the recent 

(redshift of decay zd 5 10) decay of unstable relic particles (Dicus, Kolb, and Teplitz, 1977; 

Turner, Steigman, and Krauss, 1984; Gelmini, Schramm, and Valle 1984; Olive, Seckel, 

and Vishniac, 1985), a relic cosmological term of unexplained origin (Turner, Steigman, 

and Krauss, 1984; Peebles, 1984), or even fast-moving, light cosmic strings (Vilenkin, 1984; 

however, also see Turner, 1985a). 

We have at our disposal a number of observational probes which can be used to dis- 

criminate between these different flat models all of which are motivated by early Universe 

physics. They include the angular structure of the cosmic microwave background (CMB) 

(see, e.g., Vittorio and Silk, 1984; Bond and Efstathiou, 1984; Bonometto, Lucchin, and 

Valdarnini, 1984), the distribution of mass in the Universe (as quantified by the galaxy- 

galaxy correlation function, the cluster-cluster correlation function, the existence of voids, 

superclusters, etc.), the usual cosmological tests (magnitude-redshift diagram, etc.; Charl- 

ton and Turner, 1986), and the peculiar velocity field of the Universe (see, e.g., Kaiser, 

1983; Vittorio and Silk, 1985a). In this paper we focus on the large scale peculiar velocities 

predicted in these various scenarios. 

In the linear regime, peculiar velocities are related directly to the density perturbations 

which gave rise to them via gravitational forces. As such they provide a very direct probe 

of the density field of the Universe on large scales, where the perturbations are still linear. 

This is in contrast to the distribution of visible galaxies which only provides a direct 
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probe of the density field of the Universe if bright galaxies are a good tracer of the mass 

distribution. 

In this paper we report the results of model calculations for the expected peculiar 

velocity field for all the models discussed above. The observational data which are relevant 

for comparison are the dipole anisotropy of the microwave background radiation and the 

anisotropy of the Hubble flow on various scales. At present, the observational situation 

with respect to the anisotropy of the Hubble flow is still in a state of flux and far from 

being clear. Although the quantity and quality of observations have increased markedly 

recently, a number of seemingly contradictory observations exist at present. This precludes 

a definitive comparison of our results with observations of the anisotropy of the Hubble flow. 

This is unfortunate because the observational data could be used to strongly constrain the 

various scenarios and perhaps even rule out some models. Given the observational situation 

at this time, we will simply present our results as ‘theoretical predictions.’ 

The outline of the rest of the paper is as follows. In the next section we review and 

discuss the observational data and indicate how the data along with our results can be 

used to test the various models. In Sec. III, we discuss the models and our method of 

computing the large-scale peculiar velocity field, and in Sec. IV we present our results in 

the form of analytic fits to the numerical results. We conclude with a brief summary. 

II. OBSERVATIONS 

The CMB dipole anisotropy (6T = 3.5 f O.lmK) is indicative of our peculiar motion 

and implies a Local Group velocity VLG = 610 + 50kms-‘, relative to the CMB, in a 

direction which is about 45” away from the Virgo Cluster (for a recent review see Lubin 

and Villela, 1986). This cluster dominates the local dynamics. The Local Group is falling 
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into Virgo with a velocity which is generally accepted to be v;,f = 250 f 50km s-i (see, 

e.g., Yahil, 1985). By subtracting V;,f from ~LG, one can attempt to evaluate the velocity 

of the Virgo cluster as a whole relative to the CMB. Th e velocity obtained in this way 

is vyc = 470 f 70kmK’, in the general direction of the Hydra-Centaurus Supercluster, 

an association of Centaurus, Antila, Hydra and several other smaller clusters at a mean 

distance of - 30 h-r Mpc. Whether or not the Hydra-Centaurus Supercluster is responsible 

for tryc is still not clear. Regardless, from this simple analysis one concludes that the Local 

Group velocity relative to the CMB arises as the combined effect of the infall into Virgo 

and of the motion of the Virgo Cluster as a whole. We will compare the motion of the Virgo 

Cluster as a whole with respect to the CMB ( a so-called “corrected” dipole anisotropy), 

vyc, to our model predictions for the dipole anisotropy. 

Determining how large a volume one must consider so that the matter within this 

volume is at rest with respect to the CMB is crucial for comparing the observations with 

theory. This is a point that we shall emphasize again in Sec. TV. An ingenious method 

of clarifying the locality of the CMB dipole anisotropy involves comparing the measured 

velocity of the Local Group relative to a given sample of galaxies, selected in a volume big 

enough not to be strongly affected by local nonlinearity. If these galaxies are unperturbed 

tracers of the Hubble flow , the peculiar velocity of the Local Group relative to the sample 

should be equal to the velocity of the Local Group relative to the CMB. In other words, 

the matter in the considered volume and the CMB are at rest and the dipole anisotropy 

observed by us is due to local effects. If the two velocities are different, a coherent motion 

relative to the CMB of all the matter inside the volume is implied. 

The IRAS Point Source Catalogue provides for the first time a galaxy sample uniformly 
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selected and with a nearly complete sky coverage. The analysis of this sample has proven 

to be a powerful probe of the Hubble flow field. It has been shown that the distribution 

of galaxies in the catalogue exhibits a dipole anisotropy in reasonable agreement with the 

direction of the CMB dipole anisotropy (to within - 20” - 30°; Yahil et al., 1986; Meiksin 

and Davis, 1985). The deepness of the IRAS sample is estimated to be < 50h-’ Mpc, and, 

it is possible that the bulk of the anisotropy is generated on even smaller scales. This seems 

to suggest a very local origin of the CMB dipole anisotropy, implying that the peculiar 

velocity field on scales > 5Oh-‘Mpc should be very small. This conclusion will be tested 

and better quantified with the acquisition of redshifts of the galaxies in sample. 

The locality (or nonlocality) of the dipole anisotropy can also be studied by analyzing 

smaller galaxy samples, with available independent measurements of radial velocities and 

distances. Different results have appeared in the literature. Rubin et al. (1976) found 

that the Local Group is moving relative to a background sample of 96 spiral galaxies 

(mean redshift 5100kns-’ ) with a velocity of 450 km s-l in a direction which is almost 

orthogonal to that inferred from the CMB dipole anisotropy. Hart and Davies (1982) found 

that the velocity of the Local Group relative to a shell of 84 spiral galaxies is in good 

agreement (both in amplitude and direction) with the one inferred from the CMB. Their 

result implies that the velocity of a sphere of radius r - 25h-‘Mpc has a residual velocity 

relative to the CMB of only 130 f 70kms-‘. devaucouleurs and Peters (1984) measured 

the velocity of the Local Group relative to galaxy shells of different radii. They concluded 

that a shell of 25 h-‘Mpc radius has a peculiar velocity of - 350 km s-i and commented 

that on scales > 40h-‘Mpc matter is at rest with respect to the CMB. Staveley-Smith 

and Davies (1985), after analyzing a sample of 200 galaxies, suggested that the bulk of 
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the dipole anisotropy is generated on scales > 40Mpc. More recently, Collins et al. (1986) 

have reobserved,half of the old Rubin et al. (1976) sample and, confirming the original 

result, concluded that a spherical volume of size - (50h-‘Mp~)~ has a peculiar velocity 

of 970 xt 300km 3-l relative to the CMB. 

Aaronson et al. (1985) measured the peculiar velocity of the Local Group relative to 

a set of 11 clusters at distances of 40 - 100 h-‘Mpc. They find a dipole anisotropy of the 

Hubble flow consistent both in direction and amplitude (780 f 188km s-‘) with the CMB; 

one would tentatively conclude that these clusters define quite accurately the comoving 

frame. The advantage of using clusters instead of galaxies rests on the greater accuracy in 

distance determinations. 

Studying a sample of - 400 elliptical galaxies, Burnstein et al. (1986) concluded 

that a volume of size - (60h-‘Mpc) 3 is moving relative to the CMB with a velocity of 

600 km s-r. Interestingly, they comment on the fact that their data reproduces both the 

Collins et aL(1986) and the Aaronson et al. (1986) results when similar subsamples are 

taken from their data. 

III. METHOD OF CALCULATION 

a) The Models 

Motivated by the inflationary Universe (and other theoretical prejudices; see, e.g., 

Dicke and Peebles, 1979) we are interested in flat models of the Universe (more precisely, 

curvature signature k = 0). The Friedmann equation for these models takes a very simple 

form 

fp z (p = yp 01 

where a(t) is the cosmic scale factor and p is the total energy density, which includes 
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matter, radiation, vacuum energy (equivalently, a cosmological term), and light strings. 

We will denote the fraction of critical density in each component today by Cl;. 

All of the models have a component of matter which is non-relativistic and can clump; 

this component includes baryons and non-relativistic (NR) dark matter. It is this compo- 

nent which most of the cosmological observations determine and which constitutues only 

- 20% of the critical density. We denote it by DNR. 

The simplest models are those where DNR is equal to 1. That is, models where there 

is but one component to the energy density. The bulk of the mass density must of course 

be in the dark component, either hot or cold relics. 

Next are the models where DNR is less than 1, and a smooth component contributes 

Fisk = 1 - n,vn . We consider the following possibilities for the smooth component: (i) 

Relic cosmological term: At present there is no fundamental understanding of why the 

cosmological term A is at least 122 orders of magnitude smaller than the only natural scale 

for it, c5/(GtL). In spite of this fact, we can at least entertain the possibility that there 

could be a small relic cosmological term today which provides fls~. In this model we 

shall further assume that the NR component behaves like cold dark matter, as Vittorio 

and Silk (1985b) and Turner et al. (1984) h ave pointed out that if the NR component is 

baryons or HDM excessive small-scale microwave anisotropy results. 

(ii) Decaying Particles: If the smooth component is relativistic particles, then they must 

have been produced by the recent decay of a massive relic species, otherwise the Uni- 

verse would never have been matter-dominated and density perturbations could never 

have grown. The kinematics of such a model Universe have been studied in detail by 

Turner (1985b). We will follow his treatment and refer the interested reader to his paper 
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for more details. The smooth component in this model is relativistic particles and today 

contributes an = 1 - Clan. The decay epoch occurs at 

(1+ 2.D) u p-12 (2) 

where p-1 is the ratio of the mass density of unstable massive particles (before they 

decay) to that in stable NR particles (baryons, etc.). The age of the Universe at the 

decay epoch is roughly equal to the lifetime of the decaying particle. [More precisely, the 

redshift when the age of the Universe is equal to the lifetime of the unstable particle is: 

1 + z(r) = O.SP-rfl~n/Cln.] nn is related to the mass, lifetime and abundance of the 

decaying particle by 

nRh2 = 1.41(m,/100eV)4’3(~“/~7)4’3(7/10gyrs)2’3 (3) 

where n,/n, is the pre-decay abundance of unstable particles relative to photons, m, is 

the mass of the unstable particle, and r is its lifetime. The decaying particles themselves 

can either be hot or cold relics. 

(iii) Light Strings: Vilenkin (1984; also see, Turner, 1985a) has suggested the possibility 

that the smooth component is either fast-moving strings or a network of light strings, either 

of which could have been produced in a relatively late phase transition ( kT N 104GeV). 

[These light strings are not to be confused with the heavy strings, responsible, in some 

scenarios, for the origin of density perturbations in the Universe; see, e.g., Zel’dovich 

(1979); Vilenkin (1985); Albrecht and Turok (1985); Turok (1985); Szalay and Schramm 

(1985).] Neither the fast-moving strings nor the network of strings can clump and so 

they too behave like a smooth component of energy density. The energy density in fsst- 

moving strings decreases as l/(ta(t)), so that while the Universe is matter-dominated 
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Pstring 0: a(t)-512 and when the Universe is string-dominated Patring 0: a(t)-’ (just 

like a curvature-dominated model). On the other hand, the energy density in a string 

network always decreases as Patring cc a(t)-2. For these light string models we assume 

that the NR component behaves like CDM. If the NR component behaved like HDM or 

were bsryons only, the predicted small-scale microwave anisotropy would be far too large 

(Vittorio and Turner, 1986). 

(iv) Open model: For comparison purposes we also include a k < 0 model, where DNR < 1 

and fIs,w = 0. As noted above it behaves like a flat model whose smooth component is 

a string network. As with the string models we will only consider the case where the NR 

component behaves like CDM. 

b) Density jluctuation spectrum 

It is generally assumed that the observed structure in the Universe is the result of the 

gravitational amplification of small, initial density fluctuations. Inflation provides definite 

predictions about the primordial perturbations -either adiabatic or isocurvature perturba- 

tions with the scale-invariant Zel’dovich spectrum. We will consider both possibilities in a 

CDM dominated universe. For hot dark matter (HDM) we consider only adiabatic fluctu- 

ations since they are indistinguishable from isocurvature fluctuations on the only relevant 

scales (those larger than the neutrino damping length) and isocurvature perturbations 

only arise in an axion-dominated Universe. For these spectra, perturbations on all length 

scales cross into the horizon with the same amplitude (equivalently, the power spectrum 

at very early times is: 16(k,ti)12 cc k.). However, those scales that enter the horizon 

before the epoch of matter-radiation equivalence (t N 10’Osec) cannot undergo significant 

growth until the Universe becomes matter-dominated. Those scales that enter the horizon 
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after matter domination undergo continuous growth. The period of interrupted growth 

for perturbations which enter the horizon before matter domination distorts the initially 

scale-invariant Zel’dovich spectrum. After that, density fluctuations on the scales of in- 

terest for the large scale structure are amplified irrespective of their wavenumber. Their 

common growth factor D(t) obeys the well known equation (see, e.g., Peebles, 1980): 

Id d 
2za2 ZD = ~TGPNRD 

The functional form of D(t) will depend upon the particular cosmological model through 

a(t). 

As usual we decompose the density fluctuations in the NR component into their Fourier 

components, 6(k, t), labeled by comoving wavenumber k. We take the scale factor a(t) to 

be normalized so that comoving wavenumbers and wavelengths correspond to physical 

wavenumbersand wavelengths today (i.e., atoday = 1). After the matter-radiation equiva- 

lence epoch the evolution of 6(k,t) factorizes: 6(k,t) G 6kD(t). 

In general Sk exhibits two characteristic length scales: a) the minimum scale Ln able 

to survive collisionless damping due to free-streaming, and b) the horizon length LEQ at 

the matter-radiation equality. For models where the NR component is dominated by stable 

HDM, 6k is well fitted by: 

1bk12 = Ak 10-~(e)“’ (5) 

where A is the overall normalization and k, = 0.49Mpc-’ DNR ha. The spectrum exhibits 

only one scale, the neutrino damping scale LD (s 2*/k,) N 13(fU~~)-‘Mpc N LEQ 

(Bond and Szalay, 1983). In the case of decaying HDM, k, = 0.49hCfpcw1P-‘nNRh2 and 

LD = 13P(DNRh’)-‘&fpc. The damping scale is reduced by (1 + sg), as the neutrino 

mass required increases with (1 + Zg). 
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For models where the NR component is dominated by stable CDM and the primordial 

flucuations are adiabatic, the spectrum has the following shape: 

b12 = A[l + & + ,“,l., + +2]2’ 

where Ais theoverallnormalization,a = 1.7(flf$~h~)-'kfpC,w = 9.0(nNRh2)-1'SMpC1'5,1 

and 7 = l.O(ll~~h~)-~Mpc~ (see, e.g., Davis et al., 1985). For CDM, LI, is negligibly 

small. The slope of the spectrum changes from the primordial slope (cc k) to ke3 for 

wavenumbers >> E. This reflects the effect we discussed earlier, the fact that pertur- 

bations which enter the horizon before matter-radiation equivalence are essentially ‘frozen 

in’ until then. The dependence of the coefficients a,~, and 7 on DNR h2 reflects the depen- 

dence of these coefficients on the only scale in the problem, LEQ. In a model dominated 

by unstable CDM the spectrum is also given by Eqn(6) and is obtained by substitut- 

ing flryn + p-‘fl,~.~~. As with unstable HDM, increasing p-’ (or equivalently, 1 + ZD) 

does not affect the shape of the spectrum, rather it merely shifts the spectrum to higher 

wavenumbers (the scales LD and LEQ are decreased). 

For a model dominated by stable CDM with isocurvature fluctuations, the spectrum 

has the following shape: 

16k12 = A[1 + (& +&,.'.! +.-,k2)'.24]1.61' 

where A is the OVerallnOrmaliZatiOn, OL = 15.(nNnh2)-‘Mpc, w = 9.89(D~n h2)-1’5&fpC1’5,1 

and 7 = 81.4(DNR h2)-2Mpc2 (Efstathiou and Bond, 1986). For a model dominated by 

unstable CDM with isocurvature perturbations the initial spectrum is also given by Eqn(7), 

by substituting fl~n + P-ifl~n as before. 

c) The peculiar velocity field 
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In the linear regime ( p u 4~ < 1) the local fluctuations in the matter velocity (relative to 

the Hubble flow) are directly related to the local fluctuations in the mass density by 

4 . Z)k(t) = -i- k W,t) 

or equivalently by, 

Q(t) = -i~6(k,t)H(t);l;~;;;, 

where uk (t) is the Fourier component of the velocity field and H(t) is the Hubble parameter. 

Eqn(8) follows from the Newtonian continuity equation for the NR component or directly 

from integrating the Newtonian equations of motion, and applies only to scales much 

smaller than the horizon. These turn out to be the scales of interest, since, as we will discuss 

below, most of the contribution to the peculiar velocity field comes from scales muchsmaller 

than the horizon. For density perturbations of a fixed amplitude 6(k, t), the gravitationally- 

induced velocities will differ in the different models due to the kinematic factor f = $$#-. 

For the RNR = 1 model D(t) 0: a(t) so that f = 1. For the A # 0, string network/k < 0, 

and fast-moving string models f = fI:F, fI%g, and 0tg respectively. For the decaying 

particle models the functional dependence is more complicated, but f is still < 1. For 

all the smooth component models f < 1, which reflects the fact that, for a given density 

fluctuation field, peculiar velocities are more efficiently induced by gravity when there is 

not a smooth component. 

The expected (or rms) peculiar velocity (i.e., relative to the CMB) of a spherical 

volume is obtained by convolving Eqn(8) with an appropriate window function (Kaiser, 

1983; Vittorio and Silk, 1985): 

t&,, (r) = $ 7 k2 dk,vkl’ W”(kr) (9) 
0 
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The specific form of the window function depends upon how the observed galaxy sample 

was defined. For simplicity we will assume that the galaxy sample is spherically symmetric, 

with number density n(r’) K ezp(-r’2/2r2). It is easy to show that in this case W(kr)2 = 

ezp(-k2r2) (the Fourier transform of a gaussian is a gaussian). If the sample is distributed 

in a shell, the form of W(kr) is slightly more complicated, but the exponential form still 

turns out to be a good approximation for a thick shell of galaxies. It is clear that only 

perturbations of wavenumber k < r-l (wavelengths 2 r ) contribute significantly to the 

integral in Eqn(9). For r -+ co, the integral reduces to a simple analytic expression: 

%n.(f) + &~~. 
It must be remembered that the velocities predicted by Eqn(9) measure the peculiar 

velocity of a randomly placed observer. For inflation-produced fluctuations the primordial 

density perturbations are gaussian, and so each component of the peculiar velocity is 

gaussian distributed, and its modulus has a &like distribution with three degrees of 

freedom. Therefore, the probability of measuring a peculiar velocity in the interval vi + v2 

is given by: 

p = (/y (LJ2e-&fk.)‘& (10) 
-J, 

From this it follows that there is a probability of 90% of measuring a velocity & < e < 

3. 

If the density fluctuations are non-gaussian (as is the case if they are induced by heavy 

cosmic strings), then Eqn(9) is still formally correct. However, since the expectation value 

of the peculiar velocity is not gaussian-distributed, urmd is not a very meaningful quantity 

as large deviations from it are not exponentially rare. 

Throughout, we consider the peculiar velocities on different scales independently. If 
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correlations between the velocities on different scales are taken into account, the limits 

presented here can be made even more restrictive (see, Vittorio, Juszkiewicz and Davis, 

1986). 

d) Normalization of the primordial spectrum 

At present early Universe physics does not make a definitive prediction as to the overall 

normalization A, and A must be determined from astrophysical/cosmological data. In the 

stable HDM scenario, we require nonlinearity (defined as the moment at which the rms 

density contrast is 0.6) to occur at a redshift .s u 3. We require this in order to account 

for the existence of the high redshift quasars. 

In the decaying HDM scenario, the reduction of the damping length ensures galaxy 

formation, and therefore we have normalized the spectrum on scales - 25hk1Mpc, by 

fitting the observed rms fluctuations in the large-scale galaxy counts, as inferred from the 

5s integral over the galaxy-galaxy correlation function E(r) [T(R) I:,,,. = $J3, where 

53 = SRr2dr((r)]. W e could also have normalized the spectrum to give nonlinearity at 
0 

a specified epoch, e.g., z N Zg or z = 3, ss with stable HDM. Both of these procedures 

lead to a smaller value for the normalization A, and hence smaller peculiar velocities (by 

a factor > 2 - 3). As we shall see, the predicted peculiar velocities for this scenario are 

already uncomfortably small. 

In the case of stable CDM, the absence of any cutoff in the density fluctuation spectrum 

and its logarithmic divergence on small scales ensure that nonlinearity occurred well in the 

past on small scales. We normalize the spectrum by requiring the rms mass fluctuation 

averaged over a randomly placed sphere of radius r = Sh-‘Mpc to be unity (Peebles, 

1982). This is equivalent to normalizing the spectrum by fitting the variance in the counts 
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of the bright galaxies. It is clear that we have implicitly assumed that bright galaxies 

are a good tracer of the overall mass distribution, since we are normalizing to the galaxy 

distribution. We use the same criterium in the decaying CDM scenario. 

IV. RESULTS 

We will present our predictions in the form of analytical fit to the results obtained by 

numerically integrating Eqn(9) in different scenarios. All of our fits are accurate to better 

than 10%. 

i) Stable Particles: HDM 

Despite several appealing features, a neutrino-dominated Universe seems to be in con- 

flict with several observations (e.g., see Frenk, Davis, and White, 1983). Kaiser (1983) has 

pointed out one important problem: in the framework of linear theory a HDM Universe 

predicts excessive peculiar velocities on scales of - 25h-‘Mpc. Thii apparent conflict 

involves several assumptions: a) nonlinearity is required at a redshift .s - 3 (see Sec. IIId); 

b) a Hubble constant h < 0.7 is assumed in order to have the the age of the Universe 

> 10”~; c) the Hart and Davies (1982) data point (v+, = 130 f 70kms-’ on the scale 

- 25h-‘Mpc) is assumed to be correct. 

One wonders if the recent measurement of high peculiar motions on large scales (Collins 

et al., 1986; Burstein et al., 1986) can resurrect a neutrino-dominated Universe. In a flat 

HDM dominated Universe we find: 

2rD = 450xi.37 km-’ 

V,J~ = 200h-‘.66 km-’ 

(114 

W 

WI v6,, = 100h-‘~8z km-’ 

16 



With the present normalization, at the 90% confidence level one has 280 < ymhi?: < 1350 

and 125 < # < 600 and 63 < s < 300. It is clear that one can account for high 

peculiar velocities on large scales by having h - 0.5. In this case, however, the expected 

dipole anisotropy far exceeds the observed value. At the 95% confidence level, for h = 0.5, 

vo > 723kms-‘, while the observed “corrected” dipole anisotropy is - 500kms-‘. 

ii) Stable Particles: CDM 

This scenario has been widely studied in the past years both in the linear and in 

the nonlinear regime. If the primordial fluctuations are adiabatic the predicted peculiar 

velocity field in the k 5 0 case is found to be: 

vD = 322km.s -1*+&03h-tJ.57 
024 

vz6 = 156kms-’ fl;;od18h-o~78 WY 

WI 

vn is quite insensitive to CNR, while both uss and vso depend inversely on CNR. This 

dependence on ~NR arises because in an open Universe w N fig% (Peebles, 1980) 

and & itself depends on ~NJR (cf., Eq.(6)). Due to the asymptotic behaviour of the CDM 

density fluctuation spectrum, the contribution to the integral in Eq.(S) per unit logarithmic 

interval of k is proportional to kZ (k + 0) and to k-’ (k -+ co), and has a maximum at 

k - $&. This justifies the Newtonian approach described in Sec. 111~ and shows that 

for a fixed normalization, as long as LEQ 2 lOh-‘Mpc the predicted dipole anisotropy 

should be approximately independent of fl~n. Now consider the limit r + 00. Utilizing 

the asymptotic formulae, it is easy to see that the dependence on the density parameter 

should approach fI;$4: while the velocities are reduced by a factor @&, the amplitude of 
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fluctuations on large scales for a fixed normalization is increased by about a factor D,\. 

On the intermediate scales, we expect an intermediate dependence upon CNR. 

The introduction of a cosmological constant (CA = l- ~NR), light, fast-moving strings 

(DFS = 1- CNR), or a string network (n,v~~ = l- Nan) to save the flat model does not 

change substantially the peculiar velocity predictions. Since k, in Eqn(5) and a,P,r in 

Eqns(6) and (7) depend upon LEQ which is CK &,\, the shape of the density fluctuation 

spectrum does not change, and the factor 4 drogD t is very similar for these three models 

(= n’g, ncjg, npg respectively), despite the fact that the growth of fluctuations in the 

A model is far more efficient than in the other three cases (Charlton and Turner, 1986). 

One way of reconciling the theoretical prejudice for an RNR = 1 Universe with the 

observed low values of ~NJR is to assume that galaxies are a biased tracer of the overall 

mass distribution (see, e.g., Bardeen et al., 1986). In this scenario galaxies form only in the 

highest peaks (v = & >> 1 ) of the density field: this would imply that the overall mass 

distribution is more uniform and that the amplitude of the rms density fluctuations is, for 

a iixed normalization criterium, reduced by a factor Y-* . It has been argued (Vittorio and 

Silk, 1985a) that in an CNR = 1 CDM dominated Universe the biased galaxy formation 

scenario may predict peculiar velocities that are too low. Peacock and Heavens (1985) 

suggest that one is forced, in any case, to have biased galaxy formation since most of the 

maxima of the density field, which are plausible seeds of galaxy formation, have a density 

contrast 6 - 26,,,: this would imply v = 2. 

With the present normalization, at the 90% confidence level one has 200 < “f;,“:b:, < 

970 and 100 < “” :~~~~“‘~ < 470 and 50 < “” *” hO’olv < 250. It is clear that for kma-’ 

v - 3 the predictions of an CNR = 1 CDM scenario are far too small to account for the 
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high peculiar motions reported on scales w 5Oh-‘Mpc. 

Eq.(12) suggests that one can have high peculiar velocities with low values both of 

the density parameter Nan and of the Hubble constant. However the upper limit to the 

small-scale anisotropy of the CMB (U son and Wilkinson, 1984) implies a lower limit on the 

density parameter fl~n, since in an ~NR Universe the growth of fluctuations is inhibited 

(Charlton and Turner, 1986). For a CDM dominated Universe with k < 0 (or with 

~NET = 1 - ~NR, since PNET 0: a- ‘) the small-scale isotropy implies: flNRhv > 0.2 

(Vittorio and Silk, 1984; Bond and Efstathiou, 1984). The case of light, fast-moving strings 

has not been studied yet, although the bound should be more restrictive since perturbations 

undergo less growth than in an open Universe (Turner, 1985a). With a non-vanishing 

cosmological constant the growth of density fluctuation is more efficient, although never as 

efficient ss in a fl NR = 1 Universe, and the CMB constraint is: flNRhv > 0.05 (Vittorio 

and Silk, 1985c). In sum, it is possible that a low density CDM dominated Universe may 

provide a way of having high peculiar velocities on large scales while still being consistent 

with the present upper limit to the CMB small-scale isotropy, especially if A = 1 - no. 

If the primordial fluctuations are of the isocurvature type, then the peculiar velocity 

field for the k < 0 model is: 

1125 = 304kms-’ fl;~*2h-o~83 

vso = 178kms-’ fl;;od38h-o~QQ 

03a) 

034 

(13c) 

At the 90% confidence level one has 326 < “f;,““;“:” < 1566, 190 < “” “sy h”‘“v 
kma-’ < 912 

and 111 < “” ;~,!;+’ < 534. 

19 



The values predicted in this case are higher than in the adiabatic case. This is due 

to the fact that the isocurvature fluctuation spectrum is flatter on small-scales than the 

adiabatic spectrum. Thus, for a flxed normalization, the density fluctuations on large 

scales are larger, and because of this the predicted velocity field has a higher amplitude. 

The scaling with ~NR is similar to the adiabatic case, since the limiting behaviour of the 

two spectra are similar. 

Forh-0.5,v-2andR,vn- 0.2 this scenario seems to provide good agreement with 

the present observational data. However, it is ruled out by the excessive large-scale CMB 

anisotropy which it predicts (Efstathiou and Bond, 1986). 

iii) Unstable particles: HDM 

As discussed in Sec. I, the decaying particle scenario is also able to reconcile a flat Uni- 

verse with the observed low values of n NR. Since the damping length decreases inversely 

with the decay redshift, one might also hope to resolve some of the other difficulties associ- 

ated with the stable neutrino scenario (Turner et al., 1984). High redshifts of decay result 

in a very small damping length (s lOh-‘Mpc), which implies that the density fluctuation 

spectrum is basically the primordial one (cc k) on the scales of interest. This spectrum 

fails in reproducing the large-scale structure. The normalization chosen, the .I3 integral, 

minimizes this difficulty. The peculiar velocity field is in this case: 

vg = 500(1+ z~)-o’4kms-’ (I4e) 

v2s = 270(1+ zo)-0~8skms-1 WI 

vso = 150(1+ zD)-o~88kms-1 (I4c) 

The values given in Eq.(14) are an analytical fit which is good for 3 5 1+ ,z~ 5 IO. At 

the 90% confidence level one has 312 < uO(l+ZOlo”’ < 1500, 169 < vZs~~:~!O.*’ kmc’ < 810, 
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and 94 < s < 450. [H ere we have considered a Universe with n,vn = 0.2 

and h = 0.5-remember, a flat Unverse dominated by relativistic particles is very youthful, 

Hot0 2: 0.55. In addition, for 0.v~ = 0.2, .cn must be 2 2 in order that the unstable 

particles have sufficient time to decay.] 

Confirmation of peculiar velocities - 600kms-’ on large scale (2 50h-‘Mpc) will 

constitute a serious difficulty for this scenario since for ZD 2 2, at the 95% confidence level 

vso < 170kms-‘. Recall that if the spectrum of perturbations is normalized by the epoch 

of nonlinearity the predicted velocities will be even smaller. It should also be remembered 

that this scenario suffers from other difficulties, the most serious of which seems to be the 

requirement of an high redshift of decay (1 + ZJJ 2 5 - 10) in order to be consistent with 

our Virgocentric infall (Efstathiou, 1985; Hoffman, 1986). This seems to be in mild conflict 

with the limit of (1 + zg) < 5 which is imposed by the small-scale isotropy of the CMB 

(Vittorio and Silk, 1985c). 

iv) Unstable Particles: CDM 

Next we consider the peculiar velocity field in the case of unstable CDM. For adiabatic 

fluctuations we find: 

vD = 684(1+ zD)-‘.“kms-’ 

v25 = 342(1+ q,)-‘.‘*kms-’ 

054 

WI 

vEo = 181(1+ zo)-‘.*‘kms-’ (15c) 

At the 90% confidence level one has 430 < “JJ (l+sOI”“o < 2050 and 210 < “ps (l+rDl’.” < kmr-’ km a-’ 

1025 and 115 < s < 550 

For decaying CDM and isocurvature fluctuations we find: 

vD = 836(1+ zD)-0.83kms-1 (164 
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va5 = 566(1+ zD)-‘.O’kms-’ OW 

v50 = 346(1 + zD)-1.08km.s-” (164 

At the 90% confidence level one has 522 < w < 2500 and 354 < s < 

1698 and 215 < s < 1038. 

We again choose fl~n = 0.2 and h = 0.5; as before, the values in Eqn(l5) and Eqn(l6) 

are fits to numerical results, for 3 5 1 + zg < 10. Irrespective of the nature of the 

initial fluctuations (adiabatic or isocurvature), a CDM decaying scenario is unable to 

explain the reported high peculiar velocities on large scales (- 50h-‘Mpc). Also, if density 

fluctuations are adiabatic, the present upper limit on the CMB small scale anisotropy 

implies zn 2 5 - 10 (Kolb, Olive, Vittorio, 1986; also, see Turner, 1985c). In addition, the 

Virgocentric infall argument applys to CDM as well. Moreover, a CDM decaying scenario 

seems unable to account for flat galactic rotation curves (Flores et ah, 1986). 

V. Summary 

We have examined the expected peculiar velocity field in 2-component, flat models of 

the Universe. Our main conclusion are: 

1) A flat HDM dominated Universe does not seem to be resurrected by the recent 

evidence of large peculiar motions on large scales (2 50h-‘Mpc) 

2) A flat CDM dominated Universe with adiabatic density fluctuations produces a 

peculiar velocity field in reasonable agreement with observations on intermediate scales 

(2 30h-‘Mpc), but it has difficulties in reproducing large scale (2 50h-‘Mpc), large 

amplitude bulk motions. If galaxies do not trace the overall mass distribution (ss in 

the biased scenarios), then the velocity field has a hopelessly small amplitude. With 
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isocurvature fluctuations, a CDM-dominated Universe has large peculiar velocities, but 

unfortunately predicts an excessive large-scale CMB anisotropy. 

3) A flat Universe dominated by the relativistic decay products of an unstable relic 

predicts small amplitude, large scale peculiar velocity field. The evidence for large-scale, 

large-amplitude peculiar velocities, if confirmed, could constitute yet another problem for 

this scenario. 

4) A low-density, CDM-dominated Universe with adiabatic fluctuations may provide 

a model which is consistent with the recent claims of largescale, large-amplitude peculiar 

velocities. Unless there is a smooth component to the mass density (e.g., A # 0, or 

light strings), one would have to abandon theoretical prejudices for a flat Universe to 

embrace such a model. Low-density, CDM-dominated models (with or without a smooth 

component) clearly deserve further attention. 
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